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Abstract—In processors where low power consumption is
essential, higher Booth encodings such as radix-8 and radix-
16 may be preferred over the more common radix-4 encoding.
With higher radix multipliers included in commercial hardware,
formal verification of such designs poses a real challenge. Verify-
ing multipliers is difficult in general; state-of-the-art verification
methods like S-C-Rewriting and computer algebra have primar-
ily addressed the multiplier verification problem for lower Booth
radices such as radix-4. However, these methods do not scale
well for higher radices. This paper explores the cause of this
limitation and proposes a list of solutions for automatic, sound,
and fast verification of such designs. These solutions include three
improvements for the S-C-Rewriting method, some of which may
be applicable to computer algebra methods as well. Experiments
have shown that higher Booth radix multipliers can now be
verified soundly, fully automatically, and in a matter of seconds
for common operand sizes such as 64 and 128 bits.

Index Terms—Formal Verification, Multipliers, Hardware Ver-
ification, Booth radix-8, Booth radix-16

I. INTRODUCTION

Integer multipliers are pillar components in processing
units. Various algorithms such as Wallace tree and Booth
encoding are used to optimize multiplier designs for area,
power, and propagation delay. Booth radix-4 encoding is a
common choice; however, radix-8 and radix-16 have been
used for systems where minimizing the power consumption
is essential [1], including commercial product designs at Intel
Corporation [2]. As hardware bugs can be very expensive,
formal verification becomes necessary to deliver correctness
guarantees about these designs.

Computer algebra and S-C-Rewriting are the state-of-the-
art methods for automatically and quickly verifying multi-
plier designs. RevSCA [3] and AMulet [4] are some of the
prominent computer algebra-based tools with notable proof-
time performance for complex multipliers. AMulet stands
out for being open-source and providing a mechanism to
check the soundness of its work by producing proof cer-
tificates. As an alternative method to computer algebra, the
S-C-Rewriting method was introduced by Temel et al. [5]. This
method is implemented as an open-source and a fully verified
tool (VeSCMul: Verified implementation of S-C-Rewriting
for multiplier verification) [6], similarly delivering soundness
guarantees about its results. S-C-Rewriting has been shown to
scale better than the state-of-the-art alternatives. For example,

1024x1024-bit Booth radix-4 multipliers can be verified within
minutes where others take hours or time-out. Performance
of these methods for higher Booth radix multipliers was not
previously reported; however, our experiments show that they
do not scale.

This paper discusses the verification of Booth radix-8
and radix-16 multipliers by examining and improving the
S-C-Rewriting method. Sec. II revisits state-of-the-art mul-
tiplier verification methods, which commonly use algebraic
rewriting for partial products. Sec. III describes the limitations
of the algebraic rewriting approach on this particular verifi-
cation problem. The subsequent sections (Secs. IV, V, VI)
propose three improvements to S-C-Rewriting for scalable
verification. Sec. VII delivers experimental results. These
experiments show the benefit of each improvement, enabling
sound, fast, and automatic verification of higher radix multi-
pliers. Sec. VIII concludes the paper.

II. STATE-OF-THE-ART VERIFICATION METHODS

There are two main similarities between the computer
algebra methods and S-C-Rewriting. First, both rely on their
ability to identify and specially handle the adder components
(e.g., full-adders) that make up multiplier designs. AMulet and
RevSCA implement their own mechanisms to handle adders in
flattened designs. S-C-Rewriting may use design hierarchy as a
user-hint, or get bundled with a program that detects adders for
full automation. The second similarity between these methods
pertains to how partial product logic is processed, that is,
both methods use algebraic rewriting/modeling of logical gates
when reasoning about Booth encoding. Algebraic rewriting
can be summarized using the following lemmas, each of which
is in the form of lhs→ rhs where expressions matching lhs
are to be replaced by rhs.

Lemma 1. ∀x, y ∈ {0, 1} x ∧ y → xy

Lemma 2. ∀x ∈ {0, 1} ¬x→ 1− x

Lemma 3. ∀x, y ∈ {0, 1} x ∨ y → x+ y − xy

These methods differ on how they define the specification
and how they carry out the proofs. Computer algebra methods
define a word-level (in terms of output) specification (see
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Def. 1) and use more algebraic modeling with polynomial
division, Gröbner basis techniques.

Definition 1. Word-level specification for unsigned and un-
truncated nxn-bit multiplication for computer algebra methods.

out = (
n−1∑
i=0

2ixi)× (
n−1∑
i=0

2iyi)

where xi and yi are the ith bits of operands x and y.

S-C-Rewriting defines a bit-level specification (see Def. 2)
and use a custom rewriting strategy to simplify designs. This
bit-level specification definition allows S-C-Rewriting to eas-
ily adapt and verify truncated, right-shifted, and/or saturated
multipliers [7].

Definition 2. Bit-level multiplication (out = x ∗ y) specifica-
tion for S-C-Rewriting.

wj =

(
j∑

i=0

xiyj−i) + c(wj−1), if j ≥ 0

0 otherwise

outj = s(wj)

where c(x) =
⌊
x
2

⌋
, s(x) = mod2(x), and xiyj−i is a

monomial with the ith and (j− i)th bits of operands x and y.

S-C-Rewriting’s simplification strategy is described with a
set of rewrite rules (see Lemmas 4-11). Along with Lemmas 1-
3, these rewrite rules aim to convert designs’ complex multi-
plier expressions to the same designated form as the bit-level
specification.

Lemma 4. ∀x, y, z ∈ {0, 1} fulladder(x, y, z) → {carry :
c(x+ y + z), sum : s(x+ y + z)}

Lemma 5. ∀x, y ∈ {0, 1} halfadder(x, y)→ {carry : c(x+
y), sum : s(x+ y)}

Lemma 6. ∀x, y ∈ Z s(s(x) + y)→ s(x+ y)

Lemma 7. ∀x, y ∈ Z c(s(x) + y)→ c(x+ y)− c(x)

Lemma 8. ∀x, y ∈ Z s(x+ x+ y)→ s(y)

Lemma 9. ∀x, y ∈ Z c(x+ x+ y)→ x+ c(y)

Lemma 10. ∀x, y ∈ Z s((−x) + y)→ s(x+ y)

Lemma 11. ∀x, y ∈ Z c((−x) + y)→ (−x) + c(x+ y)

Computer algebra methods are mathematically complete
in theory, and S-C-Rewriting in isolation is not. However,
the S-C-Rewriting can be extended with SAT solving by
automatically passing its returned expressions to an external
SAT solver, which can keep trying to complete the proofs
(only useful for fringe cases) or generate counterexamples.
This makes for a sound and complete verification flow.

In the next sections, this paper focuses on S-C-Rewriting to
examine the verification problem for higher Booth radices and
propose improvements. As both S-C-Rewriting and computer
algebra methods use algebraic rewriting/modeling of gates for
partial product logic, the next sections may help improve the
computer algebra methods as well.

III. COMPLEXITY OF ALGEBRAIC REWRITING

Algebraic rewriting is useful for reasoning about partial
products, but it is an expensive operation. Algorithm 1 shows a
procedure, as implemented by the S-C-Rewriting method, for
performing algebraic rewriting on gates. This section demon-
strates why this procedure can be problematic particularly for
higher Booth radices.

Algorithm 1 Flatten partial product logic through algebraic
rewriting with Lemmas 1-2

1: procedure PP FLATTEN(exp)
2: if exp = x ∧ y then
3: return p∗(PP FLATTEN(x), PP FLATTEN(y))
4: else if exp = x then
5: return p+(1, p−(PP FLATTEN(x)))
6: else return exp

The goal of pp_flatten given in Algorithm 1 is to
convert a Boolean expression to a polynomial. For example,
pp_flatten(’x∧ (y∧z)’) returns ’−xy+xyz+y−yz’. In
this procedure, p∗, p+, p− perform polynomial multiplication,
summation, and negation, respectively, for two-valued (0 or 1)
variables. These functions keep all the variables and terms in
generated polynomials in lexical order, they cancel or merge
terms (e.g., (x−x+y)→ y, (xy+xy)→ 2xy), and roll-down
variable exponents to 1 (e.g., x2y → xy) when necessary.
pp_flatten may be extended to include other common
logical operators such as logical OR (∨) using Lemma 3.

Correctness (i.e., soundness of rewriting) of pp_flatten,
p∗, p+, and p− can be shown through induction. The actual
code implementing and running pp_flatten is verified
using the ACL2 interactive theorem prover. The source code
and the verification events are available online1.

Runtime for pp_flatten grows exponentially with input
expression’s distinct variable count. To show this, let’s start
by stating and proving Prop. 12.

Proposition 12. pp_flatten can return a polynomial with
up to 2n terms, where n is the number of distinct variables.

The proof for Prop. 12 is as follows. The generated polyno-
mials have these properties: 1) coefficients may be integers,
2) variables can have an exponent of either 0 or 1 only, and
3) a term may not be repeated with the same or a different
coefficient. Such a polynomial will have the following form:
(c1x

0
1x

0
2... x

0
n) + (c2x

1
1x

0
2... x

0
n) + ... (c2nx

1
1x

1
2... x

1
n)

which demonstrates that there can be up to 2n terms in the
described polynomial. pp_flatten can be shown to reach
this upper-bound through Example 1, which concludes the
proof for Prop. 12.

Example 1. pp_flatten returns a polynomial with 2n

terms for: x1 ∧ x2 ∧ ... xn (can be confirmed through
induction). E.g., for n = 3, the result will have 8 terms:
1 − x1 + x1x2 − x1x2x3 + x1x3 − x2 + x2x3 − x3

1https://github.com/acl2/acl2/tree/master/books/projects/vescmul/



Let T (e), T∗(e1, e2), T+(e1, e2), and T−(e) denote the
time to compute pp_flatten(e), p∗(e1, e2), p+(e1, e2), and
p−(e), respectively, and let Ne denote the number of terms
in some expression e. As variables and monomials are kept
in lexical order (with merge-sort), the upper-bound of T∗ is
in the order of (Ne1Ne2 log2(Ne1Ne2)). Similarly, the upper-
bounds for T+ and T− are in the order of (Ne1 + Ne2) and
(Ne), respectively. This makes the ’exp = x ∧ y’ case in
pp_flatten the slowest path, so we examine this case for
worst-case analysis. Let t denote some time unit, x′ and y′

be the outputs of pp_flatten for respective arguments, z
denote the expression for ’x ∧ y’, and ne denote the number
of distinct variables in some expression e.

T (z) = T (x) + T (y) + T∗(x
′, y′)

→ T (z) ≤ T (x) + T (y) +Nx′Ny′ log2(Nx′Ny′)t

From Prop. 12, Nx′ ≤ 2nx and Ny′ ≤ 2ny :
→ T (z) ≤ T (x) + T (y) + 2nx2ny (nx + ny)t

Since nx ≤ nz and ny ≤ nz:
→ T (z)− T (x)− T (y) ≤ 2(2nz)(2nz)t

A few remarks: 1) we need an upper-bound for T (z) and
this relation gives an upper-bound for a single recursive call
T (z) − T (x) − T (y), 2) this upper-bound is a function of
number of distinct variables, and 3) as pp_flatten makes
more recursive calls, the number of distinct variables may or
may not go down; however, the total number of recursive
calls is limited to the number of Boolean operators in the
expression. Let that number be denoted as mz . These give:
T (z) ≤ mz2

(2nz)(2nz)t

Even though expression size matters, the upper-bound for time
grows exponentially with distinct variable count.

This high-complexity with distinct variable count does not
pose a big problem for lower Booth radices. For example,
Booth radix-4 uses 3-bits from multiplier to calculate multiples
of multiplicand from the coefficient set {-2, -1, 0, 1, 2}.
These multiples can be calculated with simple shifts and
negations, and an additional carry-in bit would be added to
the summation/compression tree for the two’s-complement
cases. This gives at most 5 distinct variables (3 selector bits
from multiplier, and 2 bits from multiplicand) for each partial
product bit.

On the other hand, higher Booth radices incorporate more
multiplier selector bits and uses more coefficients such as {-4,
-3, ... 3, 4} for radix-8 and {-8, -7, ... 7, 8} for radix-16. Cal-
culating the non-power-of-2 multiples of multiplicand requires
vector additions, which can substantially increase the number
of distinct variables per partial product bit. For example, as
part of a radix-8 encoding, we may see b5b4b3b2(3a)60 inside
an expression for partial products. Here, (3a)60 represents the
Boolean expression for the 60th output bit of the circuitry
calculating 3a, which is a function of the first 60 bits of
number a. Given the sheer number of distinct variables,
rewriting such logical expressions with pp_flatten does
not scale. The next three sections propose solutions to address
this problem for scalable verification of higher Booth radix
multipliers by extending the S-C-Rewriting method.

IV. IMPROVEMENT A: DO NOT FLATTEN ADDITION
LOGIC IN PARTIAL PRODUCTS

The S-C-Rewriting method was described to rewrite all of
partial product logic with pp_flatten. The method then
rewrites the adder components in summation trees to the s and
c functions (see Lemmas 4, 5). After rewriting the adders in
terms of s and c, a custom rewriting scheme with Lemmas 6-
11 is applied to resulting expressions to simplify them to the
same form as the specification (see Def. 2).

For higher Booth radices, the extra addition logic in
partial product bits causes the distinct variable count for
pp_flatten to drastically increase, so rewriting the overall
partial product logic as it is done for lower radices does not
scale. As a workaround, we ask the question if the addition
logic inside partial products can be processed the same way
as the other adder components in multiplier designs.

We guide VeSCMul (the tool implementing S-C-Rewriting)
to rewrite the adders inside partial products the same way
as the other adder components in multipliers, that is, rewrite
them in terms of s and c. This causes s and c expressions,
which are outputs of the adder logic to calculate non-power-
of-2 multiples of multiplicand, to appear inside partial product
logic. We program the pp_flatten function to treat these
output bits (s and c instances) as variables inside the given
Boolean expression. For example, (3a)60 in b5b4b3b2(3a)60
would now be an s or c instance to be processed as if it is
a distinct variable. This substantially reduces the number of
observed variables for algebraic rewriting. For radix-8, now
the program works with up to 8 variables (4 from multiplier,
4 from multiplicand); and for radix-16, it works with up to 13
variables (5 from multiplier, 8 from multiplicand).

Treating the s and c instances as variables yields terms
containing multiplication of actual input variables with an s
or c instance in the returned polynomial. For example:
b4b3b2 ∗ s(a4 + a2 + c(a2a0 + a3 + a1))

where b is the multiplier operand selecting a multiple of
multiplicand a. Such expressions/patterns are not recognized
by the previously described S-C-Rewriting algorithm, and
proof-attempts would fail. Two new rewrite rules are proposed
to extend the method to process such expressions:

Lemma 13. ∀x ∈ {0, 1} y ∈ Z x ∗ s(y)→ s(x ∗ y)

Lemma 14. ∀x ∈ {0, 1} y ∈ Z x ∗ c(y)→ c(x ∗ y)

Lemmas 13-14 distribute the multiplier operand bits into the
multiplicand’s summation expressions. Rewriting the above
example with these lemmas will yield:
s(b4b3b2a4 + b4b3b2a2 + c(b4b3b2a2a0 + b4b3b2a3 +

b4b3b2a1))

In addition to these lemmas, the program follows its already
established rewriting strategy to now successfully verify some
small Booth radix-8 and Booth radix-16 multipliers (see
experiments in Sec. VII). However, the scaling factor was
still subpar as compared to lower radix encodings, which
necessitated the search for further improvements.



V. IMPROVEMENT B: A SHORTCUT REWRITE RULE FOR
S-C-REWRITING

After Improvement A, the program implementing
S-C-Rewriting started encountering a new pattern:
...c(−s(...) + ...)

Such negated instances of s comes from flattened partial
product logic of radix-8 and radix-16 multipliers. For example,
a term returned from pp_flatten may be −b3b2∗s(a4+...),
which will later be rewritten by Lemma 13 to −s(a4b3b2+...).
Even though these are new patterns, the previously described
rewriting method could already handle such cases for a suc-
cessful design verification; however, the rewriting path it took
turned out to be very slow and caused scalability issues. As
an example, assume that the system aims to rewrite the term
below.
s(k + c(x+ c(−s(x) + y)))

Lemma 11 is applied to the underlined expression:
s(k + c(x+ c(−s(x) + y)))

and yield:
s(k + c(x+−s(x) + c(s(x) + y)))

Lemma 7 rewrites the underlined expression above to:
s(k + c(−s(x)− c(x) + x+ c(x+ y)))

Apply Lemmas 11 (2 times) and 7 again to get:
s(−s(x)− c(x)− c(x) + k+ c(x+ x+ c(x) + c(x+ y)))

Finally, Lemmas 6, 8 (2 times), 9, 10 can rewrite this to:
s(k + c(c(x) + c(x+ y)))

This final form may not have much meaning out of context,
but it can be the intended form to carry out a correctness proof.

In the above example, there are initially 2 nested calls of c,
and 10 rewriting steps are taken. For each additional nested
call of c, the number of steps would go up. In order to converge
more quickly, Lemma 15 is proposed as a shortcut rule to
extend the S-C-Rewriting method. This new rule is given a
higher application priority over the other rules.

Lemma 15. ∀x, y ∈ Z c(−s(x) + y)→ c(x+ y) + c(x)− x

Let’s apply this lemma on the example term above:
s(k + c(x+ c(−s(x) + y)))

and quickly arrive at the same expression:
s(k + c(c(x) + c(x+ y)))

Lemma 15 helped the expression converge to the form in
only 1 step. It would not make a difference if there were
more nested calls of c in this case. Such instances seem to
be common enough for this shortcut rule to make a signifi-
cant difference in improving the proof-time performance and
reduce memory allocation for large multipliers (see Sec. VII).

To prove Lemma 15, let’s define an additional lemma: ∀x ∈
Z s(x)→ x−2c(x). This lemma is correct because when x is
even, s(x) = 0 and c(x) = x/2; and when x is odd, s(x) = 1
and c(x) = (x − 1)/2. Now, in Lemma 15, we can replace
the s(x) instance with x− 2c(x), and use Lemmas 9 and 11
to show that Lemma 15 is correct.

VI. IMPROVEMENT C: DYNAMICALLY LEARN PATTERN
REDUCTIONS

On the way to the next extension, we make three observa-
tions:

1) The pp_flatten function was implemented with op-
timal (and verification friendly) data-structures for the ACL2
system, and then the overall program’s functions were pro-
filed to evaluate pp_flatten’s performance. This profiling
showed that with the other proposed improvements in place,
76% of overall verification time was spent in pp_flatten
for 64x64-bit radix-16 multipliers. This ratio went down to
58% for radix-8, and 20% for radix-4 encodings (see Table II).

2) pp_flatten is invoked for each partial product bit in
a multiplier design. This can amount to hundreds or thousands
of outermost calls of pp_flatten for a 64x64-bit multiplier.
The calculations for partial products may be expressed very
differently from design to design; however, within the same
design, the logical gate combinations among partial product
bits are expected to be shared. This means that it is likely
for pp_flatten to be called repeatedly for the same gate
patterns but with different variables.

3) Algebraic rewriting may take a large number of steps
but eventually produce a small polynomial due to vanishing
monomials, which are terms that get canceled out in summa-
tions. After implementing Improvement A, pp_flatten was
profiled for an instance of a radix-16 partial product bit, which
showed that for an input expression with 13 distinct variables
(expected maximum), the number of terms in the returned
polynomial was only 126 as opposed to the worst case scenario
of 213 = 8192. During this rewriting process, p∗ multiplied
monomials 1.80 × 104 times; a total of 1.17 × 103 distinct
monomials were created; and monomials were canceled out
4.95 × 103 times. Given that pp_flatten may be called
thousands of times, these computations can exert their toll on
a system’s resources.

These observations suggest that there might be performance
benefits from implementing a mechanism that dynamically
learns pp_flatten’s results based on input gate patterns.
This can help avoid repeated algebraic rewriting for expres-
sions of the same shape but with different variables. The
pseudo-code for such a mechanism is given in Algorithm 2.

Algorithm 2 Reuse pp_flatten results for the same gate
patterns with different variables

1: procedure PP FLATTEN WITH BINDS(exp)
2: ⟨exp, binds⟩ ← REPLACE VARS(exp)
3: poly ← PP FLATTEN(exp) ▷ a memoized call
4: poly ← REBIND VARS(poly, binds)
5: return poly

pp_flatten_with_binds from Algorithm 2 operates
as follows. The replace_vars function parses a given
expression and replaces every distinct variable (or s/c instances
that come from Improvement A) with alternative variables.
The alternative variables will always be named the same (e.g.,



var0, var1, and so on) in the same order as they replace
the original variables. Then, replace_vars will return an
expression with the same gate pattern but new variables in
place, along with a variable binding list to designate what
each variable replaced in the original expression. This is
followed by invoking pp_flatten, whose outermost calls
are memoized. Memoization prevents repeated computation
of a function for the same arguments; the system will instead
look up the returned value from a dynamically expanded hash
table. The overall procedure is finalized by rebinding the
variables in the returned polynomial to their original values
with the rebind_vars function. Changing variable names
might break lexical order so rebind_vars also reorders
terms and variables.

For example, for exp = a3 ∨ (a2 ∧ a3), replace_vars
will return var0 ∨ (var1 ∧ var0) along with binding list
{var0 ← a3, var1 ← a2}. Then, pp_flatten will compute
the corresponding polynomial: 1 − var0 + var0var1. As
pp_flatten is memoized, this input-output pair will be
remembered. Finally, rebind_vars will replace variables
using the binding list and return: 1 + a2a3 − a3.

Assume that pp_flatten_with_binds is called again
for exp = a7 ∨ (a6 ∧ a7). replace_vars will return the
same expression as before var0 ∨ (var1 ∧ var0) but with
a different bindings list {var0 ← a7, var1 ← a6}. Since
pp_flatten is memoized and it already computed the
polynomial for this intermediary expression, the system will
not call pp_flatten but instead it will look up the memoize
tables to return the same result: 1− var0 + var0var1. Then,
rebind_vars will return: 1 + a6a7 − a7.

As per the second observation, making a hit in the memoize
tables for pp_flatten in this scheme is expected to be
frequent, which is supported by the experiments with over
99% hit rate. Given how pp_flatten was taking a large
portion of the computation time (the first observation), this
system made a notable difference in improving memory and
proof-time performance (see Sec. VII).

Establishing a functional correctness proof for this proce-
dure is more tedious than pp_flatten itself. This is due to
the fact that this procedure introduces new variables in inter-
mediary expressions. Proofs include ensuring that rebinding
these intermediary variables on the polynomial returned by
pp_flatten would yield a polynomial that symbolically
evaluates to the same value as the original expression. This
proof is formalized in the ACL2 theorem prover via meta-
reasoning. The proof events along with the functions span
almost 3000 lines of ACL2 code, which is available online2.

VII. EXPERIMENTS

Proposed improvements have been implemented in VeSC-
Mul (the program implementing S-C-Rewriting). The entirety
of the verification functions and the overall procedure is end-
to-end verified using the ACL2 interactive theorem prover.
Therefore, when designs are claimed to be correct, users

2https://github.com/acl2/acl2/tree/master/books/projects/vescmul

can trust the results with high confidence. Over 1000 Booth
encoded multipliers have been gathered for experiments3.
These include signed/unsigned Wallace (WT), Dadda (DT),
and 4-to-2 compressor trees (4:2) with various fast vector
adders, such as Han-Carlson (HC), Brent-Kung (BK).

Table I delivers the experiment results showing the benefit of
the proposed improvements. The impacts of Improvements A
and B are substantial. Even though relatively less significant,
Improvement C also delivers around 4 times better perfor-
mance for radix-16 multipliers. Addition of Improvement C
provides some improvements for radix-4 multipliers as well.

TABLE I
EXPERIMENTS SHOWING THE IMPACT OF EACH IMPROVEMENT ON

PROOF-TIME AND MEMORY ALLOCATION

Size PP Prev Work Impr A Impr A, B Impr A, B, C

8 r4 0.1s 15MB 0.1s 15MB 0.1s 15MB 0.1s 12MB
r8 0.2s 24MB 0.1s 13MB 0.1s 15MB 0.1s 13MB
r16 2.3s .4GB 0.3s 53MB 0.3s 55MB 0.2s 43MB

16 r4 0.2s 37MB 0.2s 37MB 0.2s 37MB 0.2s 32MB
r8 7.8s 1.3GB 0.3s 56MB 0.3s 58MB 0.2s 37MB
r16 Stack ovrflw 2.5s .73GB 1.6s .28GB 0.5s .11GB

32 r4 0.6s .13GB 0.6s .13GB 0.6s .13GB 0.5s .11GB
r8 Stack ovrflw 3.6s .88GB 1.3s .25GB 0.6s .13GB
r16 Stack ovrflw 104s 27GB 7.2s 1.3GB 1.7s .39GB

64 r4 2.2s .47GB 2.2s .47GB 2.2s .47GB 1.8s .39GB
r8 Stack ovrflw 145s 37GB 5s 1GB 2.1s .50GB
r16 Stack ovrflw 74m 1.3TB 31s 6.1GB 7.5s 1.7GB

128 r4 7.8s 1.9GB 7.8s 1.9GB 7.8s 1.9GB 6.2s 1.6GB
r8 Stack ovrflw 81m 1.3TB 20.4s 4.4GB 8.6s 2.2GB
r16 Stack ovrflw Time-out 128s 26GB 33s 8.3GB

Multiplier sizes range from 8x8 to 128x128. Each row consists of 72 different
benchmarks grouped with respect to size and Booth encoding (radix-4, 8, or
16), amounting to a total of 1080 different designs. Results are averaged per
benchmark. System memory is limited to 16GB. Allocated memory is shown;
memory-in-use might be lower. Time-out is set to 2 hours.

Table II shows detailed profiling results for Improvement
C. Even though some additional time is spent in the aux-
iliary functions replace_vars and rebind_vars of
Algorithm 2, the run-time for pp_flatten is cut down
considerably with a lot of memoize hits, which results in
reduction in the overall run-time.

Table III shows the performance of various tools and
compares them to VeSCMul. Kissat is a modern SAT solver.
RevSCA2 [3] supports signed/unsigned multipliers but only
for nxn-bit configurations with 2n-bit output. There is another
tool called DyPoSub from the same research group, but it
has been reported to have unsound and incomplete results [8].
AMulet [4] similarly only supports nxn-bit multipliers. AMulet
can produce certificates to check its work. Its newest version
(AMulet2) timed out in the majority of cases; the owner
of the tool is notified, and only the results of AMulet1
are included. Around 1/3 of the RTL designs could not be
converted to a suitable input format for AMulet and RevSCA2
following the recommended way with yosys and abc utilities;
and those designs are not considered when evaluating AMulet

3https://github.com/temelmertcan/multgen



TABLE II
EXPERIMENTS SHOWING THE IMPACT OF IMPROVEMENT C

Size PP Prep Without Impr C With Impr C
M. hits pp fltn SCR M. hits ppf wb SCR

32 r4 0.4s 1.0% 0.1s 0.13s 99.8% 0.01s 0.04s
r8 0.5s 0.8% 0.66s 0.73s 99.7% 0.02s 0.09s
r16 1.1s 0.4% 5.38s 6s 99.6% 0.08s 0.6s

64 r4 1.6s 0% 0.43s 0.59s 99.7% 0.04s 0.2s
r8 1.6s 0% 2.89s 3.35s 99.5% 0.1s 0.5s
r16 2.6s 0% 23.5s 27.7s 99.4% 0.54s 4.8s

128 r4 5.1s 0% 1.8s 2.73s 99.8% 0.2s 1.1s
r8 5.3s 0% 12.6s 15.37s 99.6% 0.5s 3.3s
r16 8.2s 0% 99.1s 120.3s 99.5% 1.5s 24.5s

Multiplier sizes range from 32x32 to 128x128. Each row consists of 72
different benchmarks amounting to a total of 648 different designs. Results
are averaged. Prep column includes the time spent in the automatic adder
detection program, file reads, and other misc operations. Prep time is the
same whether or not Improvement C is implemented. SCR column gives
the averaged time spent by the rewrite rules of S-C-Rewriting. Averaged
total verification time equals SCR+Prep times. pp fltn column represents
time spent in the pp_flatten function. M. hits is ratio of memoize hits
for outermost pp_flatten calls. ppf wb column represents time spent in
pp_flatten_with_binds. Time spent in pp_flatten is omitted for
Improvement C as it is close to 0 for all cases.

TABLE III
COMPARING THE PERFORMANCE OF STATE-OF-THE-ART-TOOLS

Size PP Kissat RevSCA2 AMulet1 VeSCMul
Before

VeSCMul
Now

8 r4 6.5s 0.05s (87%) 0.1s (91%) 0.1s 0.1s
r8 6.2s 1.7s (45%) 4.5s (38%) 0.2s 0.1s
r16 7.2s TO TO 2.3s 0.2s

16 r4 TO 0.2s (87%) 0.3s (72%) 0.2s 0.2s
r8 TO 27s (45%) 941s (25%) 7.8s 0.2s
r16 TO TO TO St.O 0.5s

32 r4 TO 1.4s (87%) 1.3s (91%) 0.6s 0.5s
r8 TO 241s (44%) TO St.O 0.6s
r16 TO TO TO St.O 1.7s

64 r4 TO 19s (75%) 4.9s (88%) 2.2s 1.8s
r8 TO 1630s (19%) TO St.O 2.1s
r16 TO TO TO St.O 7.5s

128 r4 TO 642s (50%) 274s (91%) 7.8s 6.2s
r8 TO TO TO St.O 8.6s
r16 TO TO TO St.O 33s

Multiplier sizes range from 8x8 to 128x128. Each row consists of 72 different
benchmarks amounting to a total of 1080 different designs. Proof-times in
seconds are averaged when successful. Time-out (TO) is set to 1 hour. For
cases where tools could not finish the proofs, success ratios are given inside
parentheses. Stack overflow (St.O) occurred after around 10 minutes on a
system with 16GB memory.

and RevSCA2. As seen from these results, every tool except
VeSCMul performed poorly for radix-8 and radix-16 multi-
pliers. Only RevSCA2 could verify some 64x64-bit radix-
8 multipliers in around 27 minutes (only less than 20% of
the benchmarks were verified, the rest timed-out). VeSCMul
is more comprehensive and faster, verifying all the cases in
a matter of seconds. VeSCMul only used S-C-Rewriting to
verify these designs without needing a SAT solver.

Finally, Table IV shows that VeSCMul can be used for
designs with arbitrary operand sizes and other arithmetic
operations such as multiply-add, dot-product, truncation, and
shifting. Being able to verify such configurations is important

TABLE IV
PROOF-TIME RESULTS IN SECONDS FOR MULTIPLIER DESIGNS IN

ARBITRARY CONFIGURATIONS

Function Summary Architecture Result

64x64+128 (Multiply add) 4:2-r8-HC 2.2s
5(32x64)+64 (5-point dot-product-accumulate) DT-r16-BK 18.2s
(64x64)[63:0] (Multiply, return lower half) WT-r8-LF 1s
(64x64)[95:32] (Multiply, return mid. portion) WT-r8-LF 2.1s
(64x64)[127:64] (Multiply, return upper half) WT-r8-LF 2.5s
10x1024 (asymmetric multiply) DT-r8-KS 42.8s
1024x10 (asymmetric multiply) DT-r8-KS 24.7s
10x1024 (asymmetric multiply) DT-r16-KS 75.2s
1024x10 (asymmetric multiply) DT-r16-KS 39s

as they are prevalent in industrial designs such as in x86
processors. No other comparable verification tool is known
to support such configurations.

In addition, we have used VeSCMul to automatically verify
propriety high-radix designs at Intel®.

VIII. CONCLUSION

This paper has explored the verification problem of Booth
radix-8 and radix-16 multipliers, and has offered three im-
provements to the S-C-Rewriting method. These improve-
ments are implemented in the fully verified VeSCMul tool,
which delivers soundness guarantees for its results. Experi-
ments with up to 128x128-bit multipliers showed that target
designs can now be verified fully automatically in a matter
of seconds. No other automated method is known to scale as
well. Future work involves testing the verification tool on more
radix-8 and radix-16 benchmarks as they become publicly
available.
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